EDI - The XP Perspective

By: Stuart Richler, President, G.T.R. Data Inc.

Abstract

This document will describe the EDI process in a general sense giving the reader an understanding of what EDI is and is not. This will be followed by a detailed description of how GTR dealt with the issue when designing the interface to XP. Version 2 and the preceding version of the EDI interface will be discussed so that the reader can develop an understanding of the issues that were tackled and the thought process that resulted in the final product that is to be released in January 1995.

Introduction

Electronic Data Interchange (EDI) allows for the exchange of business documents between trading partners via electronic means in a standard format.

The above describes EDI in one statement. Our task will be to expand on this statement and to add the necessary details to help define a process that will allow for the seamless interface into and from the XP application. To accomplish this we will start by defining the building blocks for EDI along with all the terms used in the EDI environment. This will be followed by a discussion about the communications involved in an EDI installation. After discussing the components of EDI in general we will outline our design and thinking involved in the first version of the EDI interface.

Armed with the above knowledge the reader will be presented with a model for the EDI process that enhances the users ability to control the EDI environment. This model will be a representation for Version 2 of the EDI application.

Definitions

Data Element

The smallest unit of information in a set of data is the data element. A data element may be a single character code, a series of characters or string, or a numeric. The length of a data element may be fixed or variable, but must be consistent with the data being transmitted� The equivalent in the Progress world would be a field.

Data Segment

A data segment is composed of a function identifier and one or more functionally related data elements positioned serially in a standard manner with a data element delimiter (usually an asterisk) preceding each data element and a segment terminator character immediately following the last data element transmitted.� A simple example of a transaction set would be an invoice line. In fact an invoice line may be broken out among many data segments as will be seen later.

�
Transaction Set

A transaction set is that group of standard data segments, in a predefined sequence, needed to provide all of the data required to define a complete transaction such as a purchase order or invoice.�

Functional Group

A functional group is composed of one or more transaction sets of the same or similar type transmitted from the same location, enclosed by a functional group header and functional group trailer segments.�

Data Segment Identifier

Each data segment has a unique identifier consisting of two or three alpha/numeric characters. The data segment identifiers are specified in the first positions of each individual segment.� For example the identifier for a purchase order line would be PO1.

Transaction Set Header and Trailer

The set boundaries consist of a transaction set header segment (ST or Beginning segment) marking the beginning of each set and a transaction set trailer segment (SE) marking the end of each set.�

Functional Group Header and Trailer

The EDI standards require the use of a control header at the beginning of each functional group and control trailer at the end of each functional group. This approach provides the receiver with identification of the data application, the identification of the sender and the intended receiver each at specific locations, and absolute checkpoints to determine the beginning and end of each functional group contained in a transmission.�

Standards

The EDI standards are defined in the ANSI X12 documentation. There are many versions of the standard (for example 2.40, 3.10, 3.20, 3.40). Each version of the standard adds to the next making them upward compatible. The standard defines the order of the segments within a transaction set, the order of elements within a segment, and the definition of the elements. In general a higher level standard will add transaction sets and segments. In some instances elements will be added to segments.

�

To illustrate the above concepts refer to the following example of an EDI transaction set:.

Note that the line numbers are not part of an EDI transmission. They are used for reference purposes in our discussion. This data was generated by our translator.

1	ISA*00* *00* *zz*franklin*zz*northerntelecom*941110*1706*U*00200*000000034*0*p*>

2	GS*PO*franklin*012-stl*941110*1706*35*x*002040

3	ST*850*0030

4	BEG*00*NE*35*00*941102*na

5	CUR*ZZ* HM*1

6	FOB*DF*DE*LA - WAREHOUSE

7	ITD*ZZ*ZZ*0*941112*10*941202*30

8	MSG*A test attach memo for work

9	MSG*that has to be done today and

10	MSG*always....

11	N1*ZZ*AMERICAN BASEBALL ACCESSORIES LTD.

12	N3*1520 J.F. KENNEDY BOULEVARD

13	N4*PHILADELPHIA*PA*19105*US*cc*United States

14	REF*JB*EDIJOB

15	PO1*1*12*EA*8.1*CP*IN*1010B032*VC*1001

16	PID*F*BASEBALL BAT, WOOD, 32"

17	PID*F*BATE DE BEISBOL DE MADERA 32"

18	MSG*A line memo...a line

19	MSG*memo...memos everywhere...can

20	MSG*we have a memo today. If not

21	MSG*then we can go to school.

22	PO1*2*41*EA*8.75*CP*IN*1010B033*VC*1003

23	PID*F*BASEBALL BAT, WOOD, 33"

24	PID*F*BATE DE BEISBOL DE MADERA 33"

25	CTT*2

26	SE*24*0030

27	ST*850*0031

28	BEG*00*NE*36*02*941102*na

29	CUR*ZZ* HM*1

30	FOB*DF*DE*LA - WAREHOUSE

31	ITD*ZZ*ZZ*0*941112*10*941202*30

32	N1*ZZ*AMERICAN BASEBALL ACCESSORIES LTD.

33	N3*1520 J.F. KENNEDY BOULEVARD

34	N4*PHILADELPHIA*PA*19105*US*cc*United States

35	PO1*1*1*EA*8.1*CP*IN*1010B032*VC*1001

36	PID*F*BASEBALL BAT, WOOD, 32"

37	PID*F*BATE DE BEISBOL DE MADERA 32"

38	CTT*1

39	SE*13*0031

40	GE*2*35

41	IEA*1*000000034

The elements in the above example are separated by the element delimiter asterisk (*).

The first line is the ISA segment. It is bracketed by the IEA at line 41. The number 34 in the IEA represents the number of lines in the functional group. The ISA also identifies the sender franklin and the receiver northerntelecom. The ISA transaction set is sometimes referred to as the outer envelope of the transmission.

Another important element is the qualifier. (refer to line 7 for example).This element, usually 2 characters in length, identifies the next element. In our example the zz preceding the sender and receiver identifies the nature of the following field. The qualifier zz tells us that the sender and receiver field are mutually defined as to their meaning. This means that the definition or meaning associated with the fields are defined by the trading partner. A qualifier of 12 would tell us that the sender or receiver field is the duns number. A qualifier of 08 would identify the field as the telephone number.

Another example of a qualifier is in line 15 (PO1). Note the VC qualifier at the end of the line. This tells us that the following field (1001) is the vendors catalogue number.

This methodology allows us to conveniently identify a field to our trading partner or will identify the field to us when sent by our trading partner. The X12 standard has a dictionary that defines the meaning of all the allowable qualifiers for an element. The standards definition will reference this dictionary via a 3 digit code. This code will tell you which sub-dictionary to use when determining the proper qualifier value.

Line 2 contains the GS segment, the beginning of the functional group. It is also referred to as the inner envelope of the transmission. The GS identifies the document, in this example, a PO (Purchase Order), the sender (franklin) and the ultimate receiver (012-stl). The receiver in this instance is different from that on the ISA because we are sending the PO to a division of the sender; 012-stl is a division of northertelecom. This is a convenient way of sending to one functional group with multiple destinations. The transaction set may have multiple GS segments each identifying a different destination. The equivalent in XP would be the customer who has multiple ship-to locations.

The GS also contains an associated GE (line 40). The number 35 is the set number for this GE. This set number may be used when the document is acknowledged by the receiver (see discussion of functional acknowledgments).

Lastly the GS contains the date (941110), time (1706) and the standards version that we are sending (x 002040 = x12 2.40).

Line 3 is the start of the first document. This line starts with ST followed by the numeric code for the Purchase Order document (850). Each document in the standard is assigned a 3 digit code. For example 810 is used for invoices, 856 for advance shipping notice, etc. The last element on the ST is the set number for the document defined immediately following. The ST is bracketed by the SE on line 26. The SE contains the number of lines in the document and the set number. This set number may also be used in the acknowledgment.

Lines 4 to 25 are the actual purchase order being transmitted. I will not discuss the meaning of each line, suffice to say that the principles explained above apply to these segments also.

The Translator

The EDI transaction set shown on the previous section is the result of a process called translation. Translation software is the mechanism that allows us to speak to our trading partners in a language that they will understand. Typically it will take an ascii file, as output by our application, as the input and will create the EDI transmission file shown above as output. This process is called generation. The model below represents this graphically:

			Input File (Translator (Output File

This model can also be used for the reverse process, that is, when our trading partner sends us a transmission. In this case the process will be reversed, the incoming EDI file will be converted into a standard ascii file that our application can read. This process is called translation.

In both instances (send and receive) we will be dealing with a standard ascii file as defined by our translator. Translator is a generic term used for both the generation and translation process. This interchangeability of terms can get quite confusing. For ease of understanding I will use the term translation qualifying either send or receive.

The job of the translator on the send side will be to provide an EDI transmission file as shown above in the proper standard. The input will be a standard ascii file with enough information provided so that the translator can determine the partner that the data is being sent to and the version of the standard to be applied to. The translator will also generate the proper interchange information (ISA,IEA), functional group information (GS,GE), and document set numbers so that our partner will be able to interpret the data properly.

On the receive side, the translator will take the EDI transmission file, determine the partner from the ISA segment and translate the data into a standard format so that our application can process it.

Another feature of the translator is its ability to provide for unattended operation. This feature allows us to set up a PC that will poll the host system for available EDI documents and prepare them for transmission. This can be done at regular intervals so as to ensure for the timely processing of EDI data.

Functional Acknowledgments

Another aspect of the EDI transmission process is the sending and receiving of functional acknowledgments (FA). A FA is another document (997) used to tell our partner that we have received a transmission. It will not tell the partner anything about the document, only that it has been received. This means that if our partner sends us a transmission, as in the example above, we will send back an FA to tell him that we received the transmission. The FA can reference the set number at the functional group (GS) level or at the document (ST) level. The FA will contain more detailed information if we acknowledge at the document level. In fact, the document level should be the preferred method.

Communications

How does the generated EDI data file get to our trading partner? One way would be to connect directly to our partner via modem and upload our file to his system. This method would work well if we were only dealing with a handful of trading partners. Once we reach a critical mass of partners this avenue would begin to deteriorate. Busy signals, system hangs, and modem failures are among a host of problems that would plague us on a daily basis. Communication software would have to be maintained for each of our partners and multiple file transfer protocols would have to be supported.

This is where the Value Added Network (VAN) comes in. The VAN is a central file storing facility much like a mammoth post office box where we and our partners maintain an address. When we have files to upload we connect to the VAN, who has multiple phone connections, upload our files, check our mailbox to see if there are any documents to receive, and disconnect. Only one communication protocol must be maintained at our site and one file transfer protocol need be supported.

XP and EDI

Up to this point we have discussed EDI and its supporting facilities in general. Now we will examine how XP interfaces with EDI.

In version 1 we followed the standard route of choosing a translator and adapting our software to meet its requirements. The translator pre-defined a file layout for the 850 transaction set for us to follow. Our intent was to write software that would output this file for translation in a specific standard. We chose 2.40 as the standard and began to write software. Some of the considerations we provided for were:

	(The ability to determine which vendor can trade via EDI

	(A facility to allow for review of an outgoing document

	(Allow for resending documents.

	(Proper backup facility for outgoing or incoming files

	(Automatic triggering of an EDI document if the vendor was designated as an EDI partner.

Our software generated an ascii file in the pre-determined format and sent this file to the translator. The translator then translated the file to the EDI data file using its built in partner relationships. The partner profile within the EDI translation software contained information relevant to the translation process. Some of the information included the sender names to insert on the transmission header (ISA), functional group header (GS), the version of the standard to use, and security information.

Once the translator finished its job it then passed the EDI file to the communication software. The comm software handled the dial up to the VAN, established a comm link via a scripted procedure and uploaded the file to the proper mailbox. At the same time the comm software checked our mailbox for any available documents. If any were found they were downloaded to the PC, fed through the translator, and sent to our Host machine for integration into XP.

This process will be done with the least possible user intervention.

The above model accurately describes Version 1 of the software.

XP and Document Send and Receive - an example

To illustrate the discussion above, consider the outgoing invoice (transaction set 810). To handle this document (and other documents), we added a file that defines by trading partner (remember a trading partner can be a vendor or customer) the documents we wish to send. This file also establishes the documents we wish to receive and the relationship between the partner and/or vendor.

On invoice approval (in XP when you answer [P] to proceed at the end of invoicing) the system creates a trigger in the edi document file indicating the document number that we want to send. At a predetermined time, maybe 2 times a day, the user will initiate a batch that will create the ascii file for the translator. This batch may be initiated in a cron table entry if the operating system is UNIX.. The PC will, also at at predetermined time, poll the host machine for documents that are ready to transfer and translate. It is the job of the EDI administrator to see that there is no conflict between these 2 processes. With file in hand the PC will initiate the translation process taking the ascii file provided by the host and in turn create an EDI file based on the established partner profile criteria. In our example it would create the 810 invoice file.

The data generated by XP contains fixed length records with minimal header and footer information. The following example shows a purchase order that was output by XP. An invoice would follow the same methodology. The translator will then read this file and produce a file in the format as illustrated in the example shown previously.

850 0000000000094-23999 POFRANKLIN ABI

850 BEG0020000000CF94-23999 940212 AK

850 NTE00300000GENREIMPRIME LE 09 NOV 1994

850 REF00500000VRFRANTEST A DIANE BELANGER

850 PER00600000BDJOCELYNE BALLOU TE(819) 294-3008

850 TAX00700000T.P.S. FED. EXCLUSE

850 FOB00800000DF ZZZZZ (DDP) RENDU DROITS~ ACQUITTES ABI, BECANCOUR

850 ITD01300000053 2000000 0000 0000 PAYABLE LE 15 015

850 TD502300000B VOTRE CAMION

850 N1 02700000BSALUMINERIE DE BECANCOUR INC.

850 N3 029000005555, PIERRE-THIBAULT, C.P. 30

850 N4 03000000BECANCOUR QCG0X 1B0 CC

850 PO1039000001 0000000012UN400000000000000PECBDIRECT CB* PRIX UNITAIRE SANS FRAIS *

850 PID04300000F02 U/M 'UNIT' = BTE

850 PID04300000F02 VOICI LA LIGNE 1 DE DESCRIPTION DE L'ITEM 1.......

850 PID04300000F02 VOICI LA LIGNE 2 DE DESCRIPTION DE L'ITEM 1.......

850 PID04300000F02 VOICI LA LIGNE 3 DE DESCRIPTION DE L'ITEM 1.......

850 DTM05800000074941201

850 PO1039000002 0000000012UN400000000000000PECBDIRECT CB* PRIX UNITAIRE A SPECIFIER *

850 PID04300000F02 U/M 'UNIT' = PRE

850 PID04300000F02 VOICI LA LIGNE 1 DE DESCRIPTION DE L'ITEM 2

850 PID04300000F02 VOICI LA LIGNE 2 DE DESCRIPTION DE L'ITEM 2

850 PID04300000F02 VOICI LA LIGNE 3 DE DESCRIPTION DE L'ITEM 2

850 DTM05800000074941202

850 CTT081000000000004 COUT TOTAL $3,312.00

Note the obvious differences between this file and the translated file above. Some of them are:

	(The ISA header and IEA footer.

	(The GS header and GS footer.

	(The ST header and SE footer

	(The generated set numbers on the ISA,IEA,GS, and GE.

	(The generated segment delimiter (*).

On receiving a document the above process is reversed. We would receive the document in the EDI format and translate it into the fixed record length file as in the example above. The application would then read this file and create the proper corresponding document. If we were receiving an 850 (purchase order), the system would create either a quotation or an order in XP. If the receipt was an 810 (invoice), the system would create an Accounts Payable Voucher.

Acknowledgment Considerations

As mentioned above, an important facet of the EDI process, and in fact part of the standard, is the ability to handle the Functional Acknowledgment. This handling is usually the domain of the translation software. In the software we are using, this is true. For Version 1, this represented some special considerations.

On the send side we wanted the ability to indicate the acknowledgment on the originating document within the application. When sending data the translator generates a set number on the ST segment (see example above). This is the number that is echoed back to us when the acknowledgment is sent by our partner. Since this number is generated at the translation stage (on the PC) we must send it back to the host along with the actual document number (po or invoice) so that we can build a cross reference table. When we receive the acknowledgment from our partner we can then easily pick up this set number and reference it back to our original document. It is now possible to add this switch to a browse or a report to allow for exception reporting. For example “Show me all the invoices between date x and date y that were not acknowledged”.

For documents received from our partners, for example incoming invoices, the translator handles the acknowledgment process and we have no special problems.

Software Used in Version 1

To accomplish our task we used the following software products in Version 1 of the interface:

	(Gentran from Sterling Software for translation

	(Crosstalk Mark 4 for with CASL scripts for communications.

	(The EDI interface in XP.

Gentran and Crosstalk run on a PC with a serial or network connection.

The CASL scripts used in version 1 allow for communication to the GE VAN called GEISCO. Other networks can be supported by modifying or re-writing some of these scripts.

Application Limitations

Inherent in any EDI implementation are limitations related to your application. These limitations must be addressed before commencing trading with a partner. Some of the questions one needs to ask are:

	(Does my application support all the fields that my partner will send me?

	(Will my partner be able to accept all the fields I send?

If you are dealing with a partner that needs to see certain information on an invoice that your system does not support you may be faced with customization issues. The same is true on the send side of the coin. If your partner needs to receive certain information that is not supported in the application customization may be necessary.

Partner dependencies may be an issue. Are you both using the same unit of measure? Do your “ship via” codes mean anything to your partner? Issues arise concerning how to identify item numbers to your partner or vice-versa. These are only a few of the things that come up in the EDI setup process. Some of these issues may result in a programming effort and some may not, but one must always realize that by definition, the application may always have some say in the way one trades.

Some of the custom work may be trivial (i.e. translating your partners UOM to yours) and some may be complicated (i.e. the automakers insistence on receiving only certain data; each automaker demanding different things)

In our work with XP, we made certain design decisions regarding the relationship between EDI and the application. On the send side, we decided that we will create all possible segments based on the data dictionary. On the receive side, we say that a document will be created using whatever our partner gives us. Redundant data (i.e. data that has no corresponding dictionary field) will be ignored. If our partner must see this data on an outgoing document resulting from his document (i.e. the 850 (PO) will generate an order which in turn may generate an 810 (Invoice)) then the application must be customized. If, when sending documents, our partner dictates to us that he only wants certain segments or elements, we will have to customize the generator.

Considerations for Other Translators

In Version 1 we were faced with a decision: which translatorshould we use? We chose Gentran. The question arose: What about other translators? How will we deal with clients who are changing their application software but are currently using a different translator. We do this by providing them with a standard input/output file format that is consistent with our interface software. A bridge between their translator and our input/output file is all that is necessary to complete the picture.

Problems Inherent in Version 1 and Their Possible Solutions

As in any software project roadblocks come up frequently. The EDI interface project was no exception. In fact these problems called our original design into question. Not that these problems were insurmountable from a programming standpoint. We realized that we were creating a system that would not allow the user enough flexibility. We did not want to face a customization project every time we installed an EDI system. For those of you that are familiar with our Payroll product, ask yourself how you would have handled all those deductions that are using formulas. The formula feature was born out of our sense that we were not giving the user enough flexibility. There are so many small issues in payroll that can be handled by the user via formulas. If the user had to customize his software every time a new deduction was needed he would get frustrated. We wanted a system that was user friendly, table driven, and flexible enough for the user to make small (and sometimes large) changes using the formula feature.

Some of the problems and questions that came up after releasing version 1 were:

	(How can the user deal with partner dependencies such as differences in units of measure.

	(How does the user deal with partners who only want certain fields in their transmissions.

	(How should we handle customization issues.

	(How should we deal with segments that are not supported.

	(How should we deal with future standard revisions (from the application) standpoint.

As we grappled with these questions we arrived at the conclusion that our chosen approach would result in a different scenario every time we installed an EDI system. In fact, every project would be a custom job.

�
Blueprint for a New Method: Version 2

After much thought and through an iterative design and coding process we have come up with a solution that we think answers all the questions and provides solutions for all the concerns raised in the previous section.

This solution is Version 2 of the EDI interface. This version will create the EDI transmission file within the XP application. It will also read the EDI transmission file received from the partner. This means that the user no longer needs any third party translation software. All versions of the X12 standard are supported, the user can decide by partner which segments and elements to send/receive, partner dependencies are resolved via translation tables, customization issues are minimized, and non supported segments can be addressed. Functional acknowledgments are generated from the application and are easily referenced to the original documents. An added benefit to this approach is that the user need not learn how to use a new piece of software (i.e. the DOS based translator) and the user interface is consistent with all his other XP applications.

The only communication issue using Version 2 is that of communicating with the VAN. Since the translation process for send and receive is done within the application the user should not worry about connections between a PC and the Host and all the problems this implies.

How do we accomplish all this? The remainder of this article is devoted to outlining our approach.

�
The EDI X12 Database

Within the Progress database we store all the relationships between the X12 elements and the XP file.fields. This allows us to define where the data will be sent upon translation. The screens on the following pages illustrate this.

This screen shows the BEG segment of the 850 (Purchase Order). The lines in the Segment Maintenance frame represent the elements within the segment.

 +- Segment Maintenance -+

 | |

 | Version: 2.40 |

 +-----------------------+

 +------------ Segment Maintenance ------------+

 | |

 | Set: 850 Seg-seq: 002 Segment: BEG |

 +---+

 +---------- Segment Maintenance ----------+

 |Position Description |

 | 01 Transaction Set Purpose Code |

 | 02 Purchase Order Type Code |

 | 03 Purchase Order Number |

 | 04 Release Number |

 | 05 Purchase Order Date |

 | 06 Contract Number |

 | 07 Acknowledgment Type |

 | |

 +---+

Each element can be maintained directly allowing the user maximum flexibility as to field relationships to the XP schema as will be seen in the next screens.

The above Maintenance function allows for the setup of the default relationships. These are shipped with the system. The user can modify these defaults. A separate file is maintained allowing for the maintenance of partner specific relationships. The user need only copy the default to the partner and make any partner related changes there.

�

 +- Segment Maintenance -+

 | |

 | Version: 2.40 |

 +-----------------------+

 +------------ Segment Maintenance ------------+

 | |

 | Set: 850 Seg-seq: 002 Segment: BEG |

 +---+

+--------------------- Segment Maintenance - Insert/Modify ----+

| Position: 03 |

| Description: Purchase Order Number |

| Misc: |

| Line-no: 01 |

| |

| <-------Incoming-------> <-------Outgoing-------> |

| |

| File name: po |

| Field name: po-no |

| Translation table: Translation table: |

| Qualifier: Qualifier: |

+--+

This screen is the result of the user having chosen line 3 in the previous screen. Note that the incoming file.field is po.po-no. This tells the system in to map the BEG segment element 3 (Purchase Order Number) to the field po.po-no when data comes.

The Line-no above allows the user to define multiple relationships in the case where multiple lines of the same segment are received. This is possible on the REF segment where we can send or receive multiple reference numbers. The qualifier will tell us what the reference number is. This allows for numbers such as the Job Number, Work Order Number, etc. to be sent and received easily.

The translation table field is used where we want to translate an incoming or outgoing field prior to sending or receiving. For example if the field were the UOM we may want to change the value from E to EA. This field would reference the translation table that is defined in the Translation Table Maintenance.

The Qualifier field allows us to define what qualifier to send or receive in our transmission. This qualifier will be validated against the qualifier dictionary that is part of the X12 standard.

�

 +- Segment Maintenance -+

 | |

 | Version: 2.40 |

 +-----------------------+

+------------------ Segment Maintenance - Formulas ------------+

|<-------Incoming-------> |

| |

| Return value: character |

| Formula: |

| |

| |

| |

| |

|<-------Outgoing-------> |

| |

| Return value: character |

| Formula: |PO-NO| |

| |

| |

| |

+--+

This screen allows the user to define a formula for the incoming and outgoing data element. In fact for outgoing elements this is where we define the field that will be used. In this case it is the formula |PO-NO|. This is a keyword that has been set up to replace the meta-word with the value po.po-number. (For those familiar with Payroll formulas, functions, and keywords this will be familiar.)

The formula on incoming and outgoing elements also allows us to define a possible mathematical or logical association between the incoming or outgoing element. For example if we wanted to send the po date plus 30 days we could enter a formula reflecting this fact. Upon outgoing translation the system would add 30 to the po date before filling the date segment.

We can also “plug” in values to selected elements thereby hardcoding an outgoing or incoming value to them. In fact we can provide an outgoing segment to our trading partner that is not even supported by XP. By using a combination of formulas and plug in values we can fill all the necessary elements.

The formulas can be as simple as the one shown above or can contain if-then-else constructs and in fact can be coded with most valid Progress instructions.

If a user adds a field to the database, for example to the order or order-line file, he can add the relationship to the segment file without modifying the application. Most complicated modifications to the application will result in minor mods to the EDI software.

Document Send and Receive Version 2

Once the user has set up all the XP file.field vs X12 relationships (by partner) using the maintenance functions described above he is ready to begin trading with his EDI partners. The system is instructed via proper switch settings in the partner profile to start generating or integrating EDI documents. The same procedures are used as described in our discussion of Version 1 to accomplish these tasks. The only and most important difference is that the file created by the application is in EDI format. It need only be passed to the appropriate communications software to be transferred to the network.

To illustrate the discussion above consider the outgoing invoice (transaction set 810). On invoice approval (in XP when you answer [P] to proceed at the end of invoicing) the system creates a trigger in the edi document file indicating the document number that we want to send. At a predetermined time, maybe 2 times a day, the user will initiate a batch that will create the EDI X12 file. This batch may be initiated in a cron table entry if the operating system is UNIX.. The PC will, also at predetermined time, poll the host machine for documents that are ready to transfer.

On receiving a document the above process is reversed. We would receive the document in the EDI format and translate and create the proper corresponding document. If we were receiving an 850 (purchase order) the system would create either a quotation or an order in XP. If the receipt was an 810 (invoice) the system would create an Accounts Payable Voucher.

Acknowledgments in Version 2

The acknowledgment process, both for send and receive, is handled within the application. Acknowledgments are generated for received documents and are interpreted for outgoing documents. For example if we receive an 810 document the application will generate the acknowledgment upon receipt. The acknowledgment will be placed in the outgoing directory for transmission in the next communications session. On the other hand, when an acknowledgment is received from our partner it is processed and the appropriate source document is flagged. This allows the user to determine, by source document (eg invoice, po), which documents are acknowledged and which are not.

XP and EDI Version 2

In the section XP and EDI above we described some of the design considerations provided for in Version 1. We have included all of these points in Version 2 except for one. In Version 2 we don’t need an external translator. The translation process is done within the application. All the features in Version 1 are provided for in Version 2. These are:

	(The ability to determine which vendor can trade via EDI

	(A facility to allow for review of an outgoing document

	(Allow for resending documents

	(Proper backup facility for outgoing or incoming files

	(Automatic triggering of an EDI document if the vendor was designated as an EDI partner.

System Flow Summary in Version 2

Using Version 2 the data flow from and to our partners is much simpler and therefore more straightforward. The application generates the EDI data and places it in a user defined location. All backup and restore facilities are available within the application. The communication software then picks up the file, connects to the network and transfers the file. As in Version 1 any incoming mail is picked up, sent to the application, and merged into the database. The acknowledgment is generated and sent and any incoming acknowledgments are also processed.

Software Used in Version 2

In version 1 we predefined which software was to be used for all the facets of the EDI installation. In version 2 our focus is on the database and application issues. In our experience with EDI we have seen that there really isn’t a standard or preferred communication method. Some trading partners, such as Walmart, will dictate which communications software to use.

For Version 2 we are keeping an open mind when it comes to communication. We will help the user determine which is the best route given a specific situation. We still support the PC with Crosstalk setup but can handle any communication scenario.

The most frequently used method would probably be a PC with a network connection to the Host. The PC would be running Crosstalk with the scripts we are currently using. These scripts are designed to communicate with GEISCO but can be modified to handle other VAN’s.

Currently Supported Documents

As of December 1994 we are supporting all the documents that we supported in Version 1. These are the 810 (Invoices), 856 (Advance Shipping Notice), and 850 (Purchase Orders) outgoing. Incoming documents supported are the 850 and the 997 (Functional Acknowledgment).

Conclusion

In conclusion, we believe that we have designed a product that is flexible and easy to use. It allows for maximum expandability with minimum effort. We will be able to bring more documents on-line in a reasonable time frame thereby widening the scope of the product. Indeed, it is our aim to have a full slate of documents available to the end-user by March 1995.

�
Footnotes

		

EDI - The XP Perspective		Page: � PAGE �16�

� EDI Implementation Manual Volume III - General Business Applications page 7

� ibid

� ibid

� ibid

� ibid

� ibid

� ibid

